The EPA’s Proposed Changes to the Resource Conservation and Recovery Act and How They Will Affect Businesses
February 22, 2024

On February 8, 2024, the EPA proposed adding a group of chemicals known as per- and polyfluoroalkyl substances (PFAS), also known as “Forever Chemicals,” to the Resource Conservation and Recovery Act (RCRA) Section 3001 hazardous waste list.


This proposal carries significant implications for businesses and industrial processes. Let's delve into the details of this proposal and how its acceptance will affect businesses moving forward.


What is in the EPA's Feb 2024 Proposal?

The EPA's proposal aims to list nine PFAS compounds as hazardous waste under the RCRA. Here is the exact list:

  • Perfluorooctanoic acid
  • Perfluorooctanesulfonic acid
  • Perfluorobutanesulfonic acid
  • Hexafluoropropylene oxide-dimer acid
  • Perfluorononanoic acid
  • Perfluorohexanesulfonic acid
  • Perfluorodecanoic acid
  • Perfluorohexanoic acid
  • Perfluorobutanoic acid


PFAS are widely used in various industrial and consumer products due to their water and grease-resistant properties. However, their persistence in the environment and potential adverse effects on human health have raised concerns. Adding these nine Forever Chemicals to the list is the first step to stricter regulations regarding their use, storage, and disposal.


Implications for Businesses And Industrial Processes

Many states already strictly regulate or ban various forever chemicals in various industries. In Texas, we mainly see their use in oil and gas extraction, particularly in fracking. It is also still used in a wide range of consumer products, including waterproof gear and fast food products. This bill could create a massive impact across the board. Here are just a few of the major factors businesses and industries may face.


  • Compliance Costs. This includes implementing new measures to prevent environmental contamination and how you treat PFAS-contaminated waste. It could also eventually lead to a strict ban on the chemicals, forcing industries to utilize alternatives.
  • Cost of Rapid and Frequent Changes. As studies continue and our knowledge of forever chemicals evolve, the hazardous waste listing will enable the EPA and other regulatory agencies to enforce changes accordingly. Those who continue to use PFAS substances could face the extra expenses of staying up to date with rapidly evolving safety measures.
  • Legal Obligations. Failure to comply could result in legal consequences, including fines and penalties. This could include legal consequences for any health and environmental damages from lingering waste products linked to the company.
  • Waste Management Practices. Industries generating PFAS-containing waste will need to reassess their waste management practices to ensure compliance with stricter hazardous waste regulations. This may involve investing in specialized treatment technologies or outsourcing waste disposal to authorized facilities.
  • Supply Chain Impacts. Manufacturers may need to seek alternative substances or processes to replace PFAS, leading to potential product development and sourcing challenges. Companies that have not prepared for this ahead of time will be hit hardest as they contend with a spike in demand and a low supply of alternative solutions in the early days of implementation.


Get Ahead of the Game With Sparkling Clear

We’re tracking how the regulation of PFAS substances affects Texas industries. Keep ahead of the curve by talking to one of our experts on how we can help reduce and eliminate forever chemicals in your water supplies and waste materials. 


Reference: 

Proposal to List Nine Per- and Polyfluoroalkyl Compounds as Resource Conservation and Recovery Act Hazardous Constituents | US EPA

Study says companies using “forever chemicals” in Texas oil and gas wells | The Texas Tribune


Share this Post!

By Keith Adams October 3, 2024
The Hidden Link Between Water Quality and Energy Efficiency
July 24, 2024
Self-cleaning strainers offer an efficient and continuous way to remove debris and contaminants from fluid systems without the need for manual intervention. In this blog, we’ll discuss what self-cleaning filters are, how they work, and their various benefits in industrial filtration. What Are Self-Cleaning Filters?  Automatic self-cleaning strainers keep industrial process systems free of contaminants and debris as with traditional strainers and filters. What makes self-cleaning strainers unique is how they clean themselves without shutdowns and manual intervention. In most self-cleaning strainer designs, liquid enters the strainer from the bottom, flows upward through a filtering system, and exits as clean fluid. Any debris caught by the filter is pushed to a collection area. When the system detects a buildup of pressure, it opens a flush valve to remove the collected debris. The most common mechanisms you will see in a self-cleaning strainer include: Backwashing . The flow of the liquid is reversed to send a portion back through the filter. This dislodges trapped debris so that it can be directed to the collection area. Mechanical Scraping . Uses blades to physically scrape t he filter surface. Continuous Flushing . A bypass stream continuously dislodges and carries away contaminants while the main fluid passes through the strainer s . Ultrasonic Cleaning . Uses high-frequency vibrations to break apart and dislodge stubborn debris so that it can continue to the collection area. The longer a filter can go without shutdowns for cleaning and repairs, the greater the savings lost production. Benefits of Automatic Self-Cleaning Strainers The advantages of using a self-cleaning strainer are not limited to productivity and reduced downtime. Other benefits include: Consistent performance in flow rate and purity Prevents damage and repairs due to clogs in the filter Protects downstream equipment from damage due to clogs and impurities Is a Self-Cleaning Strainer Right for my Filtration Needs? Every work sight and process is unique, so what works perfectly at one site may not work well at another. This holds true with self-cleaning strainers as well. Before you invest in a self-cleaning strainer, you should discuss your needs with one of SCI’s knowledgeable employees. They will help you navigate factors to consider. This includes factors such as maximum flow rate, pressure, strainer mesh sizing and material compatibility to ensure the strainer will not corrode on contact with the fluid. Let Sparking Clear Help You Find the Best Filtration System For Your process. Contact us today to set up a consultation. We’ve Got You Covered
July 16, 2024
At Sparkling Clear, we understand the importance of using membrane cartridges for filtration. The pore structure of our membrane cartridges ensures extremely high retention efficiency and consistent effluent quality. This capability to capture and retain very small particulates and organisms instills a high degree of confidence that your product will be clean and safe for use. The consistent pore structure of our membranes also allows for straightforward testing, helping both manufacturers and users to understand and communicate the expected performance of the cartridge in various applications. This is why membrane filters are typically employed in scenarios where the removal of submicronic contaminants is crucial. It is important to note that membrane filters are generally used in the final stages of a filtration process. To ensure the longevity and efficiency of the membrane cartridge, it is essential to protect it with prefilters. This protection prevents premature fouling and maximizes the economic value of the system. Applications that Usually Require Membranes: Submicronic particulate removal Removal of microorganisms (bacteria, viruses, etc.) Applications requiring sterility (liquid or gas) Endotoxin removal Haze removal (typically caused by high concentrations of particles at or below 0.45 microns) Choose Sparkling Clear for your membrane filtration needs to ensure the highest quality and safety of your products.
Share by: